
EXAM III CHEM 1A Part I (Multiple Choice, 69	points)	Name	Kely			
For the following questions	For the following questions choose the best answer. (3 points each)					
1) Hydrogen bonding exists	between molecules of	of which of the follo	wing substances?			
I. CH ₃ OCH ₃	II. CH ₃ NH ₂	III.CH ₃ OH	IV. CH ₃ PH ₂			
A. I only B. II only C. III only D. IV only E. II and III						
2) Under which of the follo						
A. STP B. 2.00 atm and 273 K C. 3.00 Pa and 100 °C D. 1.00 torr and 100 °C E. 2.00 torr and 300 K 3) Which of the following in liquid? A. a high heat of vaporization	on	rential es relevant a real beha	pressure nergy due forces to becom elong for more wion cular forces in a			
B. a high critical temperature C. a low vapor pressure D. a low viscosity E. a high surface tension	е					
4) Which of the following li	quids has the lowest I	boiling point tempe	rature?			
A. F ₂ B. HF	C. N ₂ D. C	H ₄ E H ₂				
5) Which of the following so			erature?			
A. KCl B. SiC	C NaF D. S	ucrose (C ₁₂ H ₂₂ O ₁₁)	E. Br ₂			
Thelanges	et change	è				
The larges	dense stre	ner too	nols.			

For questions 6-8 use the following figure:

- 6) What will happen to substance X if it begins at 1.0 atm and 40°C and the temperature is increased to 80 °C under constant pressure?
 - A) It will stay the same
 - B) It will melt
 - C) It will sublimate
 - D) It will vaporize
 - E) It will condense
- 7) What is the boiling point of substance X at 1.00 atm?

A. 78 °C B. 118 °C

C. 40°C

D. It sublimates at that pressure

E. Under 1.00 atm, it remains a solid at any temperature

8) All three states of substance X coexist (are at equilibrium) at/along

A. H-G curve

B. G-F curve

C. G-W curve

D. point H E. point G

9) Which of the following gases would have the highest critical temperature?

A. NH₃

D. CH₄

the polar molecule unat can hydrogen bond

B. O₂ C. CO₂ E. Ne

10) Which of the following substances will be most soluble in cyclohexane (C₆H₁₂)?

A, I_2

me me w/ no nydrozen bondz

B. H₂O

C. NaOH

D. NH₃

E. HF

11) Bubbles of oxygen gas from photosynthesis form on the leaves of an underwater plant at a depth of 140. ft. If the plant is growing near the coast of New Jersey on a day on which the atmospheric pressure is 760. mmHg, what is the pressure of the oxygen gas in one of the bubbles mentioned above? (1 in = 2.54 cm)

A. 5.13 atm
B. 4.82 atm
C. 3.86 atm
D. 2.90 atm
E. 0.96 atm
$$\frac{1.09}{\text{Cm}^2} \times \frac{0.0022 \text{ lbs}}{\text{lg}} \times \frac{2.54 \text{ cm}}{\text{lm}}^3 = 0.036127 \frac{\text{lbs}}{\text{lm}} \times \frac{104 \text{ lm}}{\text{lm}^3}$$

$$\frac{1.09}{\text{cm}^2} \times \frac{0.0022 \text{ lbs}}{\text{lg}} \times \frac{2.54 \text{ cm}}{\text{lm}}^3 = 0.036127 \frac{\text{lbs}}{\text{lm}^3} \times \frac{104 \text{ lm}}{\text{lm}^3}$$

$$\frac{1.09}{\text{cm}^2} \times \frac{1.09}{\text{lm}^3} \times \frac{104 \text{ lbs}}{\text{lm}^3} \times \frac{104 \text{ lbs}}{\text{lbs}} \times \frac{104 \text{ lbs}}{\text{lb$$

12) A small bubble rises from the bottom of a lake, where the temperature and pressure are 4°C and 2.0 atm, to the water's surface, where the temperature is 25°C and pressure is 1.00 atm. Calculate the final volume of the bubble if its initial volume was 2.0 mL.

A.
$$0.72 \text{ mL}$$
B. 1.4 mL
C. 1.5 mL
D. 3.0 mL
E. 4.3 mL

13) How many liters of chlorine gas at 1.00 atm and 273 K can be produced by the reaction of 86.9 g of MnO₂ with 0.200 L of 2.50 M HCl solution?

14) How many grams of carbon dioxide gas is dissolved in a 1.00 L bottle of carbonated water if the manufacturer uses a pressure of 2.4 atm in the bottling process at 25 $^{\circ}$ C? Given: K_H of CO_2 in water = 0.0301 M/atm at 25 $^{\circ}$ C.

15)	Which of the following (or combination of the following)	ıg) wi	ll result in	decrease of
equi	ibrium vapor pressure of water in a closed container?	-6)	Toball III	accrease of
Constitution of the local division in which the local division in	T 1			

I. Decreasing the amount of liquid water no un pact

II. Increasing the temperature phase change

III. Dissolving sugar in water yes collegative property IV. Decreasing the temperature slowing KE.

A I and III
B I and III

C. III only

D. III and IV
E. None of the above

16) In how many grams of water should 25.3 g of sodium chloride (NaCl) be dissolved to prepare a 0.0991 m solution?

A. 4.36 x 10³ g

B. 792 g

C. 3.96 g

D. 500. g

E. 7,917 g

17) Calculate the molality of 6.0 M H₂SO₄ solution. The density of the solution is 1.34 g/mL.

A 10.2 m

B 4.48 m

C.7.98 m

D. 8.10 m

E. 8.43 m

(c. omel H2504 × 98.078g = 588.468g H2504

(c. omel H2504 × 98.08g = 588.468g =

18) If equal masses of $O_2(g)$ and HBr(g) are in separate containers of equal volume and temperature, which one of the following statements is true?

A. The pressure in the O₂ container is greater than that in the HBr container.

B. There are more HBr molecules than O₂ molecules.

- C. The average kinetic energy of O₂ molecules is greater than that of HBr molecules.
- D. The average kinetic energy of HBr molecules is greater than that of O₂ molecules.
- E. The pressures of both gases are the same.

19) A mixture of two gases contains 10.0 g of hydrogen gas and 10.0 g has a total pressure of 2.0 atm. Calculate the partial pressure of hydroge	n oas in that
mixture. 10.0g Hz x Inneltz = 4,95 mal H	12 742 4.05 mep
(A)1.4 x 103 mmHg 10.00 Ne x luce De = 0,4955me	ene = nang
B. 7.6 x 10 ² mmHg C. 6.8 x 10 ² mmHg C. 6.8 x 10 ² mmHg	281.10
D. 1.5 x 10 ³ mmHg (0.909) (2.0 atry) * Tatm	munty
E. $1.8 \times 10^3 \text{ mmHg}$	
20) The following gases are at 25°C: N ₂ , Ne, Ar, O ₂ , Cl ₂	
The molecules in which gas have the highest average kinetic energy (KI	E), and the
molecules in which have the highest molecular speed (MS)?	
A. N ₂ has the highest average KE and the highest average MS	
B. Ne has the highest average KE and the highest average MS	
C. They all have the same average KE and Ne has the highest average N	
D. Cl ₂ has the highest average KE and they all have the same average ME. They all have the same average KE and average MS	1S
2. They are have the same average RD and average 1015	
21) 10.0 - 5.1 - (C.H. O. NOV. 100	
21) 10.0g of glucose (C ₆ H ₁₂ O ₆ ; MW 180; a nonvolatile, nonelectrolyte s of water are mixed together. When this solution is warmed to 60. ⁰ C, the	augen diggalriag
in water. What is the vapor pressure of this solution at 100.°C?	22 Horis as
	. Jahn
A. 745 torr B. 760 torr	imel = 0.055 binel sucrose
C. 68.4 torr (0.908867) (latin) (700 punts)	vel a == 400 (400
A. 745 torr B. 760 torr C. 68.4 torr D. 691 torr 22) In an effusion experiment it required 43.6 seconds for 1.0 L of an unitary to the seconds for 1.0 L of an unitary to	72 g = 0.5549 med
22) In an effusion experiment it required 43.6 seconds for 1.0 L of an un	uent objectmen
pass through a small hole in a vacuum. Under the same conditions, 10.0	seconds were
required for 1.0 L of hydrogen gas to effuse. Which of the following is t	he unknown gas?
A F2 rate A THB THB (43.4 Sec/L) = MB B. O2 rate B THB 10.0 sec/L) = 2.02 3/mol	H2 = A
B. O2 rate B / MA (10,0 sect) 2.52 3/msl	? = B
C. CH ₄	M 0.
D. Ne	Meios

23) Arrange the following aqueous solutions in terms of increasing freezing point temperature.(Lowest > Highest)

2.0 m NaCl, 2.0 m Sucrose(C₁₂H₂₂O₁₁), 2.0 m Na₃PO₄, 2.0 m H₂C₂O₄,

A. 2.0 m NaCl, 2.0 m H₂C₂O₄, 2.0 m Sucrose, 2.0 m Na₃PO₄

B. 2.0 m Na₃PO₄, 2.0 m NaCl, 2.0 m H₂C₂O₄, 2.0 m Sucrose

C. 2.0 m Sucrose, 2.0 m H₂C₂O₄, 2.0 m NaCl, 2.0 m Na₃PO₄

D. 2.0 m Na₃PO₄, 2.0 m NaCl, 2.0 m Sucrose, 2.0 m H₂C₂O₄

E. None of the above

Nacl: 2.0 mel x 1 mel Nacl x 2 = 0.0 6849 (4)

Sucrosc: 2.0 mol x 1 mel Sucrosc x 1 = 0.00 584 (1)

Na3 Pay: 2 m x 1 mel Na3 Pay x 4 = 0.0487 (2)

H2 Czay: 2 m x 1 mel Hz (say x 3 = 0.0484 (3)

Part II (31 points)

For the following 3 questions you must show work and round off your answer to the correct number of significant figures for full credit. Place your final answer inside the provided box.

24) Adrenaline is the hormone that triggers the release of extra glucose in times of stress. A solution of $0.6\overline{4}g$ of adrenaline in 36.0g of CCl₄ increases the normal boiling point of CCl₄ to 77.29 0 C. The normal boiling point of pure CCl₄ is 76.80 0 C. Calculate the molar mass of adrenaline. (K_{b} for CCl₄ is 5.02 0 C/m, and K_{f} for CCl₄ is 29.8 0 C/m) (6 points)

1.8 × 102 g/mol

25) Write the balanced molecular, total ionic, and net ionic equations for the following reactions. (5 points each)

b) HCl(aq) + KC₂H₃O₂(aq) \rightarrow HC₂H₃O₂ (ag) + KCl (ag)

H++Cl+K++Cl+3O₂-++Cl+3O₂(ag)+K++Cl
Since weak acid do not computely desortable

H++Cl+3O₂-++Cl+3O₂-++Cl+3O₂

26) What is the concentration of phosphate ions at the end of the reaction of 45.0 mL of 0.300 M CaCl₂ with 25.0 mL of 1.00 M Na₃PO₄?(assume the volumes add)(8 points)

(0.0125 mel - 0.0015 mel) Castowl × 2 mel Nu3 Pay × 1 mel Poy 3

(0.0125 mel - 0.0015 mel) Castowl × 2 mel Nu3 Pay × 1 mel Poy 3

(0.0125 mel - 0.0015 mel) Castowl × 2 mel Nu3 Pay × 1 mel Poy 3

(0.0125 mel - 0.0015 mel) Castowl × 2 mel Nu3 Pay × 1 mel Poy 3

(0.0125 mel - 0.0015 mel) Castowl × 2 mel Nu3 Pay × 1 mel Poy 3

(0.0125 mel - 0.0015 mel) Castowl × 2 mel Nu3 Pay × 1 mel Poy 3

(0.0125 mel - 0.0015 mel) Castowl × 2 mel Nu3 Pay × 1 mel Poy 3

(0.0125 mel - 0.0015 mel) Castowl × 2 mel Nu3 Pay × 1 mel Poy 3

(0.0125 mel - 0.0015 mel) Castowl × 2 mel Nu3 Pay × 1 mel Poy 3

(0.0125 mel - 0.0015 mel) Castowl × 2 mel Nu3 Pay × 1 mel Poy 3

(0.0125 mel - 0.0015 mel) Castowl × 2 mel Nu3 Pay × 1 mel Poy 3

27) A gaseous compound is 30.4% nitrogen and 69.6% oxygen by mass. A 5.25-g sample of the gas occupies a volume of 1.00 L and exerts a pressure of 1.26 atm at -4.0° C. Determine the molecular formula of that gas. (7 points)

Empurcal Formula

30,49N x 1moll = 22.1698 mol N

69.690 × Imolo 16.005 = 4.35 mel N2.1696 0 2135 2.1698 2.1698 NO2

Mwt: 46.01

92.0213 g/mel = 2

Moleular famula: 2 (NO2)

N204

Nzoy