

The Relationship between Wavelength and Frequency

- For waves traveling at the same speed, the shorter the wavelength, the more frequently they pass.
- This means that the wavelength and frequency of electromagnetic waves are inversely proportional.
 - Because the speed of light is constant, if we know wavelength we can find the frequency, and vice versa.

$$v = \frac{c}{\lambda}$$

Color

- The color of light is determined by its wavelength or frequency.
- White light is a mixture of all the colors of visible light.
 - A spectrum
 - Red Orange Yellow Green Blue Indigo Violet
- When an object absorbs some of the wavelengths of white light and reflects others, it appears colored; the observed color is predominantly the colors reflected.

Diffraction

• When traveling waves encounter an obstacle or opening in a barrier that is about the same size as the wavelength, they bend around it; this is called **diffraction**.

- Traveling particles do not diffract.

- The diffraction of light through two slits separated by a distance comparable to the wavelength results in an interference pattern of the diffracted waves.
- An interference pattern is a characteristic of all light waves.

Einstein's Explanation

- Einstein proposed that the light energy was delivered to the atoms in packets, called quanta or photons.
- The energy of a photon of light is directly proportional to its frequenCy.
 - Inversely proportional to its wavelength
 - The proportionality constant is called Planck's Constant, (*h*) and has the value 6.626 × 10⁻³⁴ J · s.

$$E = hv$$
 $E = \frac{hc}{\lambda}$

Question

Suppose a metal will eject electrons from its surface when struck by yellow light. What will happen if the surface is struck with ultraviolet light?

- a. No electrons would be ejected.
- Electrons would be ejected, and they would have the same kinetic energy as those ejected by yellow light.
- c. Electrons would be ejected, and they would have greater kinetic energy than those ejected by yellow light.
- d. Electrons would be ejected, and they would have lower kinetic energy than those ejected by yellow light.

Spectra

- When atoms or molecules absorb energy, that energy is often released as light energy.
 – Fireworks, neon lights, etc.
- When that emitted light is passed through a prism, a pattern of particular wavelengths of light is seen that is unique to that type of atom or molecule; the pattern is called an **emission spectrum**.
 - Noncontinuous
 - Can be used to identify the material

Exciting Gas Atoms to Emit Light

Flame tests

© 2017 Pearson Education, Inc.

- Light is emitted when gas atoms are excited via external energy (e.g., electricity or flame).
- Each element emits a characteristic color of light.

Rydberg's Spectrum Analysis

 Rydberg analyzed the spectrum of hydrogen and found that it could be described with an equation that involved an inverse square of integers.

$$1/\lambda = R(1/m^2 - 1/n^2)$$

© 2017 Pearson Education, Inc.

The Bohr Model of the Atom

Neils Bohr (1885–1962)

- The nuclear model of the atom does not explain what structural changes occur when the atom gains or loses energy.
- Bohr developed a model of the atom to explain how the structure of the atom changes when it undergoes energy transitions.
- Bohr's major idea was that the energy of the atom was **quantized** and that the amount of energy in the atom was related to the electron's position in the atom.
 - Quantized means that the atom could have only very specific amounts of energy.

<section-header><list-item><list-item><list-item><list-item><list-item>

Uncertainty Principle

- Heisenberg stated that the product of the uncertainties in both the position and speed of a particle was inversely proportional to its mass.
 - -x =position, $\Delta x =$ uncertainty in position
 - -v = velocity, $\Delta v =$ uncertainty in velocity

$$\Delta x \times m \Delta v \ge \frac{h}{4\pi}$$

 This means that the more accurately you know the position of a small particle, such as an electron, the less you know about its speed, and vice versa.

Schrödinger's Equation Schrödinger's equation allows us to calculate the probability of finding an electron with a particular amount of energy at a particular location in the atom. Solutions to Schrödinger's equation produce many wave functions, Ψ. A plot of distance versus Ψ² represents an orbital, a probability distribution map of a region where the electron is likely to be found. Hψ = Eψ

Angular Momentum Quantum Number, /	
Value of <i>I</i>	Letter Designation
<i>I</i> = 0	S
<i>l</i> = 1	p
1=2	d
1=3	f

Atomic Spectroscopy Explained Each wavelength in the spectrum of an atom corresponds to an electron transition between orbitals. When an electron is excited, it transitions from an orbital in a lower energy level to an orbital in a higher energy level. When an electron relaxes, it transitions from an orbital in a higher energy level to an orbital in a lower energy level. When an electron relaxes, a photon of light is released whose energy equals the energy difference between the orbitals.

Probability and Radial Distribution Functions ψ² is the probability density.

- The probability of finding an electron at a particular point in space
- For s orbital maximum at the nucleus
- Decreases as you move away from the nucleus
- The radial distribution function represents the total probability at a certain distance from the nucleus.
 Maximum at most probable radius
- **Nodes** in the functions are where the probability drops to 0.

I = 2, *d* Orbitals

Each principal energy state above n = 2 has five d orbitals.

 $-m_{l} = -2, -1, 0, +1, +2$

- Four of the five orbitals are aligned in a different plane.
 - The fifth is aligned with the z axis, $d_{z \text{ squared}}$.
 - $d_{xy}, d_{yz}, d_{xz}, d_{x \text{ squared } y \text{ squared}}$
- The third-lowest energy orbitals in a principal energy level
- Mainly four-lobed
 - One is two-lobed with a toroid
- Planar nodes
 - Higher principal levels also have spherical nodes.

