

Chemical Bonds

- Compounds are composed of atoms held together by *chemical bonds*.
- Chemical bonds result from the attractions between the charged particles (the electrons and protons) that compose atoms.
- Chemical bonds are broadly classified into two types:
 - -ionic and
 - -covalent.

Ionic Bonds

- *Ionic bonds*, which occur between metals and nonmetals, involve the *transfer* of electrons from the metal atom to the nonmetal atom.
- The metal atom then becomes a *cation* while the nonmetal atom becomes an *anion*.
- These oppositely charged ions attract one another by electrostatic forces and form an **ionic bond**.

© 2017 Pearson Education, Inc.

In the solid phase, the ionic compound is composed of a lattice—a regular three-dimensional array—of alternating cations and anions.

- A compound's **chemical formula** indicates the elements present in the compound and the relative number of atoms or ions of each.
 - –Water is represented as H_2O .
 - -Sodium Chloride is represented as NaCl.
 - -Carbon dioxide is represented as CO₂.
 - Carbon tetrachloride is represented as CCl₄.

- An **empirical formula** gives the *relative* number of atoms of each element in a compound.
- A **molecular formula** gives the *actual* number of atoms of each element in the molecule of a compound.
 - (a) For H_2O_2 , the greatest common factor is 2. The empirical formula is therefore HO.
 - (b) For B_2H_6 , the greatest common factor is 2. The empirical formula is therefore BH_3 .
 - (c) For CCl₄, the only common factor is 1, so the empirical formula and the molecular formula are identical.

Types of Chemical Formulas

© 2017 Pearson Education. Inc

- The type of formula we use depends on how much we know about the compound and how much we want to communicate.
- A structural formula communicates the most information. An empirical formula communicates the least.

Molecular Models Hydrogen • A molecular model is a more Carbon accurate and complete way to specify a compound. Nitrogen A ball-and-stick molecular Oxygen model represents atoms as Fluorine balls and chemical bonds as sticks: how the two connect Phosphorus reflects a molecule's shape. The balls are typically color-Sulfur coded to specific elements. Chlorine © 2017 Pearson Education, Inc.

View of Elements and Compounds

- Atomic elements exist in nature with single atoms as their basic units. Most elements fall into this category.
 - Examples are Na, Ne, K, Mg, etc.
- **Molecular elements** do not normally exist in nature with single atoms as their basic units; instead, they exist as molecules—two or more atoms of the element bonded together.
 - There are only seven diatomic elements and they are H₂, N₂, O₂, F₂, Cl₂, Br₂, and I₂.
 - Also, P₄ and S₈ are polyatomic elements.

Molecular Compounds

- Molecular compounds are usually composed of two or more covalently bonded nonmetals.
- The basic units of molecular compounds are molecules composed of the constituent atoms.
 - Water is composed of H₂O molecules.
 - Dry ice is composed of CO₂ molecules.
 - Propane (often used as a fuel for grills) is composed of C_3H_8 molecules.

Ionic Compounds

- **Ionic compounds** are composed of cations (usually a metal) and anions (usually one or more nonmetals) bound together by ionic bonds.
- The basic unit of an ionic compound is the **formula unit**, the smallest, electrically neutral collection of ions.
- Table salt is an ionic compound with the formula unit NaCl, which is composed of Na⁺ and Cl⁻ ions in a one-to-one ratio.

	TABLE 3.2 Some Common Monoatomic Anions				
	Nonmetal	Symbol for Ion	Base Name	Anion Name	
	Fluorine	F^-	fluor	Fluoride	
	Chlorine	CI^-	chlor	Chloride	
	Bromine	Br^-	brom	Bromide	
	lodine	I [_]	iod	lodide	
	Oxygen	02-	ох	Oxide	
	Sulfur	S^{2-}	sulf	Sulfide	
	Nitrogen	N^{3-}	nitr	Nitride	
	Phosphorus	P ³⁻	phosph	Phosphide	
© 2017 Pearson Education, Inc.					

Naming Type II Ionic Compounds

- The second type of ionic compound contains a metal that can form more than one kind of cation, depending on the compound, bonded to a nonmetal anion.
- The metal's charge must be specified for a given compound.
- The proportion of metal cation to nonmetal anion helps us determine the charge on the metal ion.

- Iron, for instance, forms a 2+ cation in some of its compounds and a 3+ cation in others.
- Metals of this type are often *transition metals*.
 - -FeS: Here, iron is +2 cation (Fe²⁺).
 - $-Fe_2S_3$: Here, iron is +3 cation (Fe³⁺).
 - $-Cu_2O$: Here, copper is +1 cation (Cu⁺).
 - -CuO: Here, copper is +2 cation (Cu^{2+}).
- Some main group metals, such as Pb, Ti, and Sn, form more than one type of cation.

	TABLE 3.3 Some Metals That Form Cations with Different Charges			
	Metal	lon	Name	Older Name*
	Chromium	Cr ²⁺	Chromium(II)	Chromous
		Cr ³⁺	Chromium(III)	Chromic
	Iron	Fe ²⁺	Iron(II)	Ferrous
		Fe ³⁺	Iron(III)	Ferric
	Cobalt	Co ²⁺	Cobalt(II)	Cobaltous
		Co ³⁺	Cobalt(III)	Cobaltic
	Copper	Cu ⁺	Copper(I)	Cuprous
		Cu ²⁺	Copper(II)	Cupr <mark>ic</mark>
_	Tin	Sn ²⁺	Tin <mark>(II)</mark>	Stannous
		Sn ⁴⁺	Tin(IV)	Stannic
	Mercury	${\rm Hg_2}^{2+}$	Mercury(I)	Mercurous
		Hg ²⁺	Mercury(II)	Mercuric
	Lead	Pb ²⁺	Lead(II)	Plumbous
		Pb ⁴⁺	Lead(IV)	Plumbic
*, cc s) al in sy arson Education, Inc.	An older naming olumn for the na ystem, chromiu Ily, the suffix -ou idicates the ion ystem in this te	g system s ame of the m(II) oxide is indicates with the gi xt.	ubstitutes the name metal and its charg is named chromous the ion with the les reater charge. We wi	es found in this e. Under this oxide. Addition- ser charge, and <i>-ic</i> Il <i>not</i> use the older

Naming Ionic Compounds Containing Polyatomic Ions

- We name ionic compounds that contain a polyatomic ion in the same way as other ionic compounds, except that we use the name of the polyatomic ion whenever it occurs.
- For example, NaNO₂ is named according to its cation, Na⁺, *sodium*, and its polyatomic anion, NO₂⁻, *nitrite*.
- Hence, NaNO₂ is sodium nitrite.

TABLE 3.4 Some Common Polyatomic Ions						
Name	Formula	Name	Formula			
Acetate	$C_2H_3O_2^-$	Hypochlorite	CIO ⁻			
Carbonate	$C0_3^{2-}$	Chlorite	CIO_2^-			
Hydrogen carbonate (or bicarbonate)	HCO ₃ ⁻	Chlorate	CIO3-			
Hydroxide	OH-	Perchlorate	CIO ₄ ⁻			
Nitrite	NO_2^-	Permanganate	MnO ₄ ⁻			
Nitrate	NO_3^-	Sulfite	S03 ²⁻			
Chromate	$\mathrm{CrO_4}^{2-}$	Hydrogen sulfite (or bisulfite)	HSO_3^-			
Dichromate	$Cr_2O_7^{2-}$	Sulfate	S04 ²⁻			
Phosphate	P04 ³⁻	Hydrogen sulfate (or bisulfate)	HSO_4^-			
Hydrogen phosphate	HPO42-	Cyanide	CN ⁻			
Dihydrogen phosphate	$H_2PO_4^-$	Peroxide	0 ₂ ²⁻			
Ammonium	NH_4^+					
© 2017 Pearson Education, Inc.						

Oxyanions

- Most polyatomic ions are **oxyanions**, anions containing oxygen and another element.
- Notice that when a series of oxyanions contains different numbers of oxygen atoms, they are named according to the number of oxygen atoms in the ion.
- · If there are two ions in the series,
 - the one with more oxygen atoms has the ending -ate, and
 - the one with fewer has the ending -ite.
- For example,
 - NO₃⁻ is *nitrate*.
 - SO₄²⁻ is *sulfate*.
 - NO₂⁻ is *nitrite*.
 - SO₃²⁻ is *sulfite*.

Molecular Compounds: Formulas and Names

- The formula for a molecular compound cannot readily be determined from its constituent elements because the same combination of elements may form many different molecular compounds, each with a different formula.
 - Nitrogen and oxygen form all of the following unique molecular compounds: NO, NO₂, N₂O, N₂O₃, N₂O₄, and N₂O₅.

Practice: Name the Acid				
1. H ₂ S	hydrosulfuric acid			
2. HCIO ₃	chloric acid			
3. HC ₂ H ₃ O ₂	acetic acid			
© 2017 Pearson Education, Inc.				

Molar Mass of Compounds

Using Molar Mass to Count Molecules by Weighing • Molar mass in combination with Avogadro's number can be used to determine the number of atoms in a given mass of the element. - Use molar mass to convert to the amount in moles. Then use Avogadro's number to convert to number of molecules. # $molecule A = \frac{gram A}{1} * \frac{1 \ mole A}{molar \ mass A} * \frac{6.02 \times 10^{23} \ molecules A}{1 \ mole A}$

Determining a Chemical Formula from Experimental Data

Empirical Formula

- Simplest, whole-number ratio of the atoms or moles of elements in a compound, *not a ratio of masses*
- Can be determined from elemental analysis

 Percent composition
 - Masses of elements formed when a compound is decomposed, or that react together to form a compound

Combustion Analysis

- A common technique for analyzing compounds is to burn a known mass of compound and weigh the amounts of products.
 - This is generally used for organic compounds containing C, H, and O.
- By knowing the mass of the products and composition of constituent element in the product, the original amount of constituent element can be determined.
 - All the original C forms CO₂, the original H forms H₂O, and the original mass of O is found by subtraction.
- Once the masses of all the constituent elements in the original compound have been determined, the empirical formula can be found.

Chemical Equations

- · Shorthand way of describing a reaction
- Provide information about the reaction
 - Formulas of reactants and products
 - States of reactants and products
 - Relative numbers of reactant and product molecules that are required can be used to determine weights of reactants used and products that can be made

Organic Compounds

- Early chemists divided compounds into two types: organic and inorganic.
- Compounds originating from living things were called organic; compounds originating from the earth were called inorganic.
- Organic compounds were easily decomposed and could not be made in the lab.
- Inorganic compounds were very difficult to decompose but could be synthesized.