s.

Name: - KEY -

Exam #3—100 points

Directions: Answer each question below to the best of your ability. <u>Show all work where calculations are</u> required. <u>Always indicate the states</u> of all species when writing chemical reactions; if you do not indicate a state I will assume that you mean that the chemical is in an aqueous solution.

- 1. (26) Fill in the product(s) of each chemical reaction below, then balance the chemical equation. Write "no rxn." If you do not expect a reaction to occur.
 - (a) $AgNO_3(aq) + KCI(aq) \rightarrow AgCI(S) + KNO_3$ (2)
 - (b) $\sum C_6 H_{14}(\ell) + 19 O_2(g) \rightarrow 12 CO_2(g) + 14/14 20(g)$ (3) 1 9.5 6 7 20(g) (3)

(c)
$$2 \operatorname{Al}(s) + 3 \operatorname{Zn}(\operatorname{NO}_3)_2(\operatorname{aq}) \rightarrow 2 \operatorname{Al}(\operatorname{NO}_3)_3$$
 (ag) +32n (s) (3)

(d)
$$Mg(s) + 2 HCI(aq) \rightarrow MgCl_2 + H_2(g)$$
 (3)

(e)
$$Na_2O(s) + CO_2(g) \rightarrow Na_2O_3(s)$$
 (3)

(f)
$$MgCl_2(aq) + LiNO_3(aq) \rightarrow NOTXN$$
 (3)

$$(g) \quad Ca(s) + 2 H_2O(\ell) \rightarrow C_a(OH)_{\ell} + H_2(s) \quad (3)$$

- (h) $2 HI(aq) + Li_2SO_3(aq) \rightarrow H_2O_{(q)} + SO_{2(j)} + 2 LiI 3$
- (i) $CaSO_4(s) \xrightarrow{\Delta} CaO_{(S)} \xrightarrow{+} SO_3(j)$

4

- 2. (12) Write balanced chemical equations for each of the following reactions. Indicate all states. <u>A</u> reaction does occur in each case; do not write "no reaction."
 - (a) Aqueous solutions of nickel (II) nitrate and potassium hydroxide are combined.

$$Ni(NO_3)_2 + 2KOH \longrightarrow Ni(OH)_2(S) + 2KNO_3 (F)$$

(b) Ethyl butyrate is a liquid which smells like pineapples and has molecular formula $C_6H_{12}O_2$. It is burned in air.

$$C_{6}H_{12}O_{2}(k) + 8O_{2}(g) \longrightarrow 6CO_{2}(g) + 6H_{2}O_{1}(g) (4)$$

(c) Aqueous solutions of ammonium chloride and barium hydroxide are mixed together.

$$2 \operatorname{NH}_{4}CI + \operatorname{Ba}(OH)_{2} \longrightarrow 2\operatorname{NH}_{3}(a_{2}) + 2\operatorname{H}_{2}O(a) + \operatorname{Ba}(a_{2}) + \operatorname{Ba}(a_{2}$$

3. (10) For the reactions below, (i) complete and balance the chemical equation, (ii) provide a complete ionic equation, and (iii) write the net ionic equations. <u>A reaction does occur in each case; do not write "no reaction."</u>

(i) Balanced equation:
$$KHCO_3(aq) + HBr(aq) \rightarrow KB_r + H_2O_{(R)} + CO_2(g)$$

(ii) Complete ionic equation: $K^+ + HCO_3^- + H^+ + Br^- \rightarrow K^+ + B_r^- + H_2O_{(R)} + CO_2(g)$
(iii) Net ionic equation: $H^+ + HCO_3^- \rightarrow H_2O_{(R)} + CO_2(g)$
(i) Balanced equation: $HNO_3(aq) + KF(aq) \rightarrow I_2F_{(a_1)} + KNO_3$
(ii) Complete ionic equation: $I_2 + KF(aq) \rightarrow I_2F_{(a_1)} + KNO_3$
(iii) Complete ionic equation: $I_2 + KF(aq) \rightarrow I_2F_{(a_1)} + KNO_3$
(iii) Complete ionic equation: $I_2 + KF(aq) \rightarrow I_2F_{(a_1)} + KNO_3$
(iii) Net ionic equation: $I_2 + KF(aq) \rightarrow I_2F_{(a_1)} + KF(aq) \rightarrow I_2F_{(a_1)} + KNO_3$

4. (3) List the formulas of any three *weak* acids.

5. (8) Stearic acid is a fatty acid with formula $C_{18}H_{36}O_2$ which is found in large concentrations in some highfat foods. Suppose that a 1.00 gram sample of stearic acid is burned in excess oxygen. How many grams of carbon dioxide should be produced in this reaction?

$$\begin{array}{c} C_{18}H_{36}O_{2} + 26O_{2} \longrightarrow 18CO_{2} + 18H_{2}O_{2}(4) \\ (1) \\ 1,00g & S.A. \\ 1 \mod S.A. \\ 18 \mod CO_{2} + 44.01g & CO_{2} \\ 284.47g & 11 \mod S.A. \\ 1 \mod CO_{2} \end{array}$$

6. When phosphine gas combines with oxygen gas, tetraphosphorus decoxide and water are produced:

$$4 \text{ PH}_3(g) + 8 \text{ O}_2(g) \longrightarrow \text{ P}_4 \text{O}_{10}(s) + 6 \text{ H}_2 \text{O}(g)$$

a. (10) How many grams of P₄O₁₀ will be produced when 35.0 grams of PH₃ reacts with 76.5 grams of Oxygen gas in a closed container? PIL₅: 35.0 g PIL₃ | 1 mol PH₃ | 1 mol P₄O₁₀ | 283.88 g 78.97 g PL₃ | 1 mol PH₃ | 1 mol P₄O₁₀ | 283.88 g 78.97 g PL₃ | 4 mol PIL₃ | 1 mol P₄O₁₀ | 283.88 g 78.97 g PL₃ | 4 mol PIL₃ | 1 mol P₄O₁₀ | 283.88 g 76.5 g PL₃ | 1 mol O₂ | 1 mol P₄O₁₀ | 283.88 g 76.5 g PL₃ | 1 mol O₂ | 1 mol P₄O₁₀ | 283.88 g 76.5 g PL₃ | 1 mol O₂ | 1 mol P₄O₁₀ | 283.88 g 76.5 g PL₃ | 1 mol O₂ | 1 mol P₄O₁₀ | 283.88 g 76.5 g PL₃ | 1 mol O₂ | 1 mol P₄O₁₀ | 283.88 g 76.5 g PL₃ | 1 mol O₂ | 1 mol P₄O₁₀ | 283.88 g 76.5 g PL₃ | 1 mol O₂ | 1 mol P₄O₁₀ | 283.88 g 76.5 g PL₃ | 1 mol O₂ | 1 mol P₄O₁₀ | 283.88 g 76.5 g PL₃ | 1 mol O₂ | 1 mol P₄O₁₀ | 283.88 g 76.5 g PL₃ | 1 mol O₂ | 1 mol P₄O₁₀ | 283.88 g 76.5 g PL₃ | 1 mol P₄O₁₀ | 1 mol P₄O₁₀ | 1 mol P₄O₁₀ | 283.88 g 76.5 g PL₃ | 1 mol P₄O₁₀ | 283.88 g 76.5

b. (6) Which reagent was in excess, and how many grams of it remain unreacted at the end of part (a)?

Suppose that a solution contains <u>100.00 grams of MgCl₂ for every 2500. mL of solution</u>.
 a. (5) What is the molarity of the solution?

$$\frac{100.00 \text{ g } \text{M}_{3}\text{Cl}_{2} \text{ [mol]}}{195.21 \text{ g}} = 1.050 \text{ mol}}$$

$$\frac{1.050 \text{ mol}}{2.500 \text{ L}} = 8.4201 \text{ M}$$

b. (4) Suppose that 5.00 mL of this solution is added to 55.0 mL of water, forming a new solution. What is the molarity of this new solution? $M_1 V_1 = M_2 V_2$

$$M_2 = \frac{M_1 \cdot V_1}{V_2} = \frac{(0.4201 \text{ MP}(5.00 \text{ mL}))}{(60.0 \text{ mL})} = \frac{0.0350 \text{ M}}{0.0350 \text{ M}}$$

c. (6) How many milliliters of a 0.250 M AgNO₃ solution would be needed to completely react with all the magnesium chloride in the solution in part b?

$$2 \operatorname{Ag} \operatorname{NO}_3 + \operatorname{M_5Cl}_2 \longrightarrow 2 \operatorname{AgCl} + \operatorname{M_5}(\operatorname{NO}_3)_2 \bigcirc$$

8. (10) To determine the concentration of a sulfuric acid (H_2SO_4) solution, a chemist titrates it using a 0.3555 M potassium hydroxide solution. 22.45 mL of the KOH is required to completely neutralize 10.00 mL of the acid. What is the molarity of the sulfuric acid solution?

$$H_{2}SO_{4} + 2KOH \longrightarrow 2H_{2}O + K_{3}SO_{4}B$$

$$22.45 \text{ mL KOH} 0.3755 \text{ nol KOH} 1 \text{ mol } H_{2}SO_{4} = 0.003990 \text{ mol}$$

$$1000 \text{ mL KOH} 2 \text{ mol KOH} = 0.003990 \text{ mol}$$

$$3$$

$$molarity: \frac{0.003990 \text{ mol}}{0.01000 \text{ L}} = 0.3990 \text{ M}$$

$$4$$

4

Periodic Table

0

	1 1A																	18
	1	7																8A
1	Н 1.008	2 2A	٦										13 3A	14 4A	15 5A	16 6A	17 7A	2 He 4.003
2	3 Li 6.941	4 Be 9.012											5 B 10.81	6 C 12.01	7 N 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18
3	11 Na 22.99	12 Mg 24.31	3 3B	4 4B	5 5B	6 6B	7 7B	8 8B	9 8B	10 8B	11 1B	12 2B	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 CI 35.45	18 Ar 39.95
4	19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83,80
5	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3
6	55 Cs 132.9	56 Ba 137.3	57 La 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 Os 190.2	77 Ir 190.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (209)	85 At (210)	86 Rn (222)
7	87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (263)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (269)	109 Mt (268)	110 Ds (272)	111 Rg (272)			L			i - I	

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231.0	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Activity Series (shortened)

Most Active	Li K Ca Na	Displaces water from cold water, steam, and acids
	Al	Displaces water from
	Zn	steam, and acids
	Cr	
	Fe	
	Ni	Displaces water from
	Pb	acids
	H ₂	
	Cu	Does not displace water
	Ag	from cold water, steam,
Least Active	Au	and acids

Solubility Rules for Selected Anions

chlorates	all are soluble					
sulfates	all are soluble except Ag^+ , Pb ²⁺ , Hg ₂ ²⁺ , Hg ²⁺ , Ba ²⁺ , Sr ²⁺ , and Ca ²⁺					
sulfides	none soluble <u>except</u> Group 1A, NH4 ⁺ , and Group 2A					
carbonates and phosphates	none soluble <u>except</u> Group 1A NH4 ⁺					

The solubility rules for other ions which you were supposed to memorize are not shown on this table.