ELECTRONS IN ATOMS AND THE PERIODIC TABLE

Chapter Nine

Light and Energy

- Electromagnetic radiation (EM) is an especially important form of energy for scientific study.
 - Many types of "radiant" energy are included under this description, including visible light, X-rays, and radio waves.
 - EM can be described as waves, which can be characterized by their wavelengths (λ), the distance between the peaks of each wave.
 - We also may describe light as a particle, called a photon

Where c is the speed of light $c = 3.00 \times 10^8 \text{ m/s}$

Energy, Wavelength, and Frequency

- What is the mathematic relationship (i.e. directly or inversely proportional) between each of the following?
 - Energy and Frequency
 - Energy and Wavelength

The Electromagnetic Spectrum

- EM radiation can be classified into different regions based on its wavelength or its frequency.
 - The longest wavelenths (smallest frequencies) correspond to radio waves.
 - The shortest wavelengths (greatest frequencies) correspond to gamma rays.

Emission of Light

So What is Light, Really?

- □ The answer to this is not as simple as you might think
- Light (EM in general) is correctly described as both
 Particles (photons)
 - Waves
- □ Light is not one or the other; it is both simultaneously!

Quantization

- Notice that, for a given atom, electrons are only allowed to jump to discrete energy levels.
 - In other words, an electron in the third level may fall to the first or second level, but not "in between" the levels.
- As a result, only specific energy changes are allowed and can be observed for each atom.
 - We say that these energy changes are "quantized" since only specific quantities of energy can be emitted,
- As an analogy, compare a ball moving down a set of stairs (step-by-step) to one moving down a ramp.
 - Which corresponds to "quantized" energy values?

Matter as Waves

- As with light, matter can be described both as particles and as waves
- The wave description of matter is only useful at very small scales (molecules, atoms, and subatomic particles)
- At the smallest scales it is not generally possible to deal with absolute ideas of location
- Instead, we must content ourselves with relative probabilities as described by complex mathematics

Orbitals & Subshells

- In truth, electrons do not simply rotate about the nucleus in simple patterns.
- Instead, electrons are mostly contained in <u>orbitals</u>, which are shapes which describe the regions where an electron is likely to be found.
- We will call a complete "set" of orbitals in a given energy level a <u>subshell</u>.
- Four orbital types are commonly encountered in modern chemistry.
 - These are designated s, p, d, and f, and are listed here from lowest energy orbital type to highest.
- Each individual orbital can hold, at most, two electrons in its ground state.

The principal quantum number n tells you the number of subshells in a shell. The n = 1 shell has one subshell, the n = 2 shell has two subshells, and so on. All subshells in a given shell are close to one another both in size and in energy.

The s Orbital

- □ The s orbital is the least energetic of the orbitals, and, as a sphere, is also the most simple-looking.
- □ All energy levels have exactly one *s* orbital.
 - Since any orbital can only hold two electrons, each s orbital is limited to this.

Electron Configurations

- Atoms always fill their lowest energy orbitals first, and successively higher ones as more electrons are added.
 - This is known as the <u>Aufbau principle</u>; aufbau is German for "building up"
- The order in which the electrons fill can be found on the periodic table.
 - Notice that the periodic table is broken up into 4 distinct "blocks," each of which indicates where the highest energy electrons are.

- You can abbreviate the electron configuration with a special notation
 - Consider V for example.
 - The last noble gas before V was Ar (element 18)
 - So, we can write [Ar]4s²3d³ as vanadium's electron configuration.
 - What is the electron configuration of antimony in shorthand notation?

Electron Configurations and Groups

- The concept of electron configurations is very useful for predicting the chemical properties of many elements
 - We will study this in detail in the coming chapters
- Notice that, with few exceptions, all elements in the same group have similar endings on their electron configurations
 - All alkali metals (Group 1A) end in s¹
 - **\square** All halogens (Group 7A) end in p^5
 - All noble gases (Group 8A) with the exception of helium end in p⁶

Spin

- □ Each has a property we call spin
 - This is not exactly the same thing as the spin of the earth or spin on a baseball, but this is an acceptable model
- Electrons may spin in one of two possible directions
- □ We refer to these as "spin up" and "spin down"

The Pauli Exclusion Principle & Hund's Rule

- In a ground state atom, two electrons in the same orbital must have opposite spins; this is a simplified version of a rule called the <u>Pauli</u> <u>Exclusion Principle</u>
- Another important principle, <u>Hund's Rule</u>, states that, for ground state atoms, electrons will fill unoccupied orbitals within a subshell before filling singularly-occupied ones
 - For example, in a nitrogen atom, with electron configuration 1s²2s²2p³, the three electrons in the 2p subshell reside in different orbitals (i.e. they do not pair up)

Orbital Diagrams

- Orbital diagrams are a graphical form of the electron configuration, representing electrons as arrows (up arrow for spin-up, down for spin-down) and orbitals as lines
- The lines are listed from lowest energy at the bottom (i.e. the 1s orbital) to highest

Example

Draw the orbital diagrams for
 a. titanium
 b. S²⁻

Periodic Trends

- By comparing the position of one element to another on the periodic table, it is often possible to make comparisons between the properties of those elements; these are a result of <u>periodic trends.</u>
- □ In this class we consider four of these trends:
 - Atomic radius
 - Ionization Energy
 - Metallic Character
 - Electronegativity (discussed in Chapter 10)

Atomic Radius: Ions

- Recall that when an ion is formed, an atom gains or loses electrons, while the number of protons remains the same
- When an atom loses an electron to form a cation, the positive charge of the nucleus pulls the remaining electrons closer towards the nucleus
- A monatomic cation is smaller than the corresponding neutral atom
 - Na⁺ has a smaller atomic radius than Na
 - Mg²⁺ has a smaller atomic radius that Mg

Atomic Radius: lons

- When an atom gains an electron to form an anion, the increased repulsion of the additional electrons results in electrons moving farther from the nucleus
 - Cl⁻ has a larger atomic radius than Cl
 - O²⁻ has a larger atomic radius than O
- When comparing atoms and ions with the <u>same</u> number of electrons, the largest ions are those with the most negative charge

Atomic Radius: lons

Rank each of the following atoms/ions in order from largest to smallest

I. Li K N Ne Cs II. Ne Al $^{3+}$ O $^{2-}$ F $^{-}$ Na $^{+}$ Mg $^{2+}$

Ionization Energy

The <u>ionization energy</u> is the amount of energy required to remove an electron from a mole of atoms in their gas state of a particular element.

$$X_{(g)} \rightarrow X^{+}_{(g)} + e^{-}$$

- The <u>first ionization energy</u> is the amount of energy required to remove the first electron.
- The <u>second ionization energy</u> is the amount of energy required to remove the second electron. Etc.

Ionization Energy

- □ lonization energy tends to decrease down a group.
 - Explanation: Electrons in the outer shells are further from the nucleus and feel its pull less than the core electrons do. Less energy is required to remove them.
- Ionization energy tends to increase from left to right across a period.
 - Explanation: Protons are added to the nucleus from left to right across the table, and these protons exert a greater pull on the electrons, requiring more energy to remove them.
 - Why is the first ionization energy of oxygen less than that of nitrogen?

Comparing Ionization Energies

- Generally, the first ionization energy is less than the second, which is less than the third, etc.
- If an atom has lost enough electrons to give it an octet in its outer shell, it requires a tremendous amount of energy to remove any electrons beyond this.

Table 13.1 Successive Ionization Energies for Some Main Group Elements (kilojoules per mole)

	First	Second	Third
Na	495.8	4562	6912
Mg	737.7	1451	7733
Al	577.6	1817	2745

Metallic Character

- As the term implies, the <u>metallic character</u> of an element is a description of how much "like a metal" it is
- Metals tend to lose electrons in chemical reactions, while nonmetals either gain or share them
- Metallic character can effectively be described as the opposite of ionization energy, so the trends in metallic character are the opposite of those for ionization energy
- □ Metallic character tends to increase down a group.
- Metallic character tends to decrease from left to right across a period.

