CHEMICAL REACTIONS

Chapter Seven

What is a Chemical Reaction?

- A <u>chemical reaction</u> involves the conversion of one or more substances into one or more different substances.
- The substance(s) which we begin with are called the <u>reactant(s)</u>
- The substance(s) which we end with are called the product(s)

Evidence of a Chemical Reaction

- There are many visual and/or sensory clues which can be used to detect whether or not a chemical reaction may have occurred
- The most obvious indication of a reaction is the formation of a solid, called a <u>precipitate</u>, when two chemical solutions are combined
 - Such a reaction is called a precipitation reaction
- Other reactions produce a gas

Solid formation

© 2012 Pearson Education, Inc.

© 2012 Pearson Education, Inc.

Evidence of a Chemical Reaction

- Many chemical reactions give off energy as heat, while others absorb heat
- Some reactions give off energy by emitting light
 We will not consider any of these reaction in this class
- Many chemical reactions are accompanied by a change in the color of the solution
- Unfortunately, virtually none of these pieces, taken alone, can confirm that a chemical reaction has taken place
 - Physical changes may also cause some of these effects to occur

- Chemical reactions are written with the reactants to the left, the products to the right, and an arrow between them to indicate the change.
 - Occasionally symbols or values may be written over or under the arrow to indicate the reaction conditions.
- □ An Example:

 $H_2 + O_2 \longrightarrow H_2O$

Balancing Chemical Equations

□ Consider the last reaction:

$$H_2 + O_2 \longrightarrow H_2O$$

- □ There is a problem with this equation!
- It indicates that we started with two oxygen atoms, but ended with one.
- □ What does this contradict?

Balancing Chemical Equations

- We must <u>balance</u> chemical equations, which is to say that there must be equal numbers of each type of atom on either side of a chemical reaction.
- To accomplish this, we put coefficients in front of the chemical formulas whose atom numbers we wish to increase.

 Note that you may <u>never</u> change the subscripts already in place in a chemical formula!
 Why?

Balancing Chemical Equations

- To balance chemical equations first count the number of each type of atom you have on both sides of the reaction.
- If a polyatomic ion occurs on both sides of the chemical equation you should balance it as a unit.
- If an element appears in only one compound in each side of an equation, balance it first.
 - If this is true of more than one element, balance any metals before nonmetals.
- Identify any lone elements (as opposed to compounds) in the formulas; you will balance these <u>last</u>.
- From here, each equation requires its own logic; by trial and error, you should be able to balance the equation.
- The only other real "tip" I can give you on this subject is that practice makes perfect!

Examples

Balance each of the following chemical reactions:

 $\begin{array}{l} \mathsf{Mg} + \mathsf{O}_{2} \longrightarrow \mathsf{MgO} \\ \mathsf{AI} + \mathsf{Br}_{2} \longrightarrow \mathsf{AlBr}_{3} \\ \mathsf{Na} + \mathsf{MgCl}_{2} \longrightarrow \mathsf{Mg} + \mathsf{NaCl} \\ \mathsf{Na}_{3}\mathsf{PO}_{4} + \mathsf{BaCl}_{2} \longrightarrow \mathsf{Ba}_{3}(\mathsf{PO}_{4})_{2} + \mathsf{NaCl} \\ \mathsf{C}_{6}\mathsf{H}_{12}\mathsf{O}_{6} + \mathsf{O}_{2} \longrightarrow \mathsf{CO}_{2} + \mathsf{H}_{2}\mathsf{O} \end{array}$

Examples

- Write the balanced equation that corresponds to each statement
 - When methane reacts with oxygen gas, carbon dioxide and water vapor are produced.
 - Calcium metal reacts with ferric oxide, yielding calcium oxide and iron metal.
 - Treatment of carbon monoxide gas with oxygen gas produces carbon dioxide.

Symbols Used in Chemical Equations

It is a common practice to include the states of substances in the chemical equation

State	Abbreviation
solid	(s)
liquid	(1) or (l)
gas	(g)
aqueous	(aq)

Example: $H_2SO_4(aq) + Ba(OH)_2(aq) \longrightarrow 2H_2O(l) + BaSO_4(s)$

Symbols Used in Chemical Equations

 Other symbols or information may be written above or below the arrow

Symbol/Text	Meaning		
Δ	reaction is heated		
hv	reaction requires light		
a time span (ex. 2 h, 3 d)	how long reaction is carried out		
a temperature (ex25°C)	temperature reaction is carried out at		
a chemical formula (ex. MnO ₂)	a chemical which acts as a catalyst*		

*A <u>catalyst</u> is a substance which speeds up the rate of a chemical reaction. It is not consumed by the reaction, and therefore is ignored when balancing the equation.

Double Displacement Reactions

- The general format for a double displacement reaction involves two ionic compounds trading their anions:
 AX + BY → AY + BX
- AX and BY are both <u>aqueous</u> solutions, meaning both ionic compounds are dissolved in water.
- □ The charges of the ions <u>do not change</u> in this type of reaction
- Reactions do not always occur under these conditions. We must look for certain characteristics of the products:

Double Displacement Reactions

$$AgNO_{3(aq)} + NaCl_{(aq)} \longrightarrow AgCl_{(s)} + NaNO_{3(aq)}$$

$$3Ba(OH)_{2(aq)} + 2FeCI_{3(aq)} \longrightarrow 3BaCI_{2(aq)} + 2Fe(OH)_{3(s)}$$

 $\text{HCl}_{(aq)} + \text{NaOH}_{(aq)} \longrightarrow \text{H}_2\text{O}_{(I)} + \text{NaCl}_{(aq)}$

Precipitation Reactions and Solubility of Compounds

- Solubility is best described as the degree to which a compound will dissolve in a solvent (usually water).
 - A compound that is <u>soluble</u> will dissolve to a significant extent.
 - Compounds that are <u>insoluble</u> will not dissolve, remaining solid in solution.
- A reaction which produces an insoluble product can be described as a <u>precipitation</u> reaction; the product "falls out" of the solution like rain precipitates.

Solubility Rules

You should know the following solubility rules (in water) by memory:

- All <u>nitrates</u> and <u>acetates</u> are soluble.
- All salts of <u>Group I cations (Li⁺, Na⁺, etc.)</u> and <u>ammonium</u> are soluble.
- All <u>chlorides</u>, bromides, and iodides are soluble, except those of Ag⁺, Pb²⁺, and Hg₂²⁺.
- All hydroxides are insoluble except those of Group I, NH₄⁺, Ba²⁺, Sr²⁺, and Ca²⁺.
 - Calcium, barium, and strontium hydroxides are only *slightly* soluble, but we will not worry about this distinction for now

Complete Ionic Equations

Example:

$$NaCl_{(aq)} + AgNO_{3(aq)} \rightarrow AgCl_{(s)} + NaNO_{3(aq)}$$

Complete Ionic Equation: $Na^{+}_{(\alpha q)} + Cl^{-}_{(\alpha q)} + Ag^{+}_{(\alpha q)} + NO_{3}^{-}_{(\alpha q)} \rightarrow AgCl_{(s)} + Na^{+}_{(\alpha q)} + NO_{3}^{-}_{(\alpha q)}$

Spectator lons

- A spectator of sports is someone who watches the game from the sidelines, but does not participate.
- Similarly, in chemical reactions, <u>spectator ions</u> "hang out" in a solution but do not actively participate in the reaction itself.
 - In other words, any ion which is both on the reactants and products side of a reaction is a spectator ion, for it has not undergone a chemical change.
- The ions' main purpose is to maintain constant charge in the solution.

Net Ionic Equations

- <u>Net ionic equations</u> only show those chemicals which participate in the reaction. Spectator ions are not included.
- To write a net ionic equation, first write down the total ionic equation.
- Then, cancel anything which appears identically on both sides of the reaction.

Net Ionic Equations

□ Consider the complete ionic equation

$$Na^{+}_{(aq)} + Cl^{-}_{(aq)} + Ag^{+}_{(aq)} + NO_{3}^{-}_{(aq)} \rightarrow AgCl_{(s)} + Na^{+}_{(aq)} + NO_{3}^{-}_{(aq)}$$

□ Now, factor out the spectator ions

$$Na^{+}_{(aq)} + Cl^{-}_{(aq)} + Ag^{+}_{(aq)} + NO_{3^{-}(aq)} \rightarrow AgCl_{(s)} + Na^{+}_{(aq)} + NO_{3^{-}(aq)}$$

□ The net ionic equation is left over. $Ag^{+}_{(aq)} + Cl^{-}_{(aq)} \rightarrow AgCl_{(s)}$

Examples Write chemical equations, complete ionic equations, and net ionic equations for the following: a. a solution of barium chloride reacts with a sodium sulfate solution. b. solutions of ferric chloride and lithium hydroxide are combined **Gas Evolution Reactions** When produced in a reaction, some compounds will immediately decompose into other products. **Carbonic acid** (H_2CO_3) will decompose into $CO_{2(q)}$ and $H_2O_{(1)}$. **a** Ammonium hydroxide (NH₄OH) will decompose into NH_{3(aq)} and H₂O_(I). **u** Sulfurous acid (H_2SO_3) will decompose into $SO_{2(a)}$ and $H_2O_{(1)}$. Notice that each produces water and a gaseous compound

- formed by the atoms left after water has been removed from the starting formula.
- If you produce any of these three compounds in a reaction, cancel it out and replace it with the decomposition products.
- Hydrogen sulfide, H₂S(g), produced by the reaction of a soluble sulfide salt (like Na₂S) with an acid, may also be a product of a gas evolution reaction

TADLEZA	Towner of Commenceder	The till a develop	One Evalution Depations
IABLE 7.4	Types of Compounds	That Undergo	Gas Evolution Reactions

	Intermediate		
Reactant Type	Product	Gas Evolved	Example
sulfides	none	H_2S	$2 \operatorname{HCl}(aq) + \operatorname{K}_2 \operatorname{S}(aq) \longrightarrow \operatorname{H}_2 \operatorname{S}(g) + 2 \operatorname{KCl}(aq)$
carbonates and bicarbonates	H ₂ CO ₃	CO ₂	$2 \operatorname{HCl}(aq) + \operatorname{K}_2\operatorname{CO}_3(aq) \longrightarrow \operatorname{H}_2\operatorname{O}(l) + \operatorname{CO}_2(g) + 2 \operatorname{KCl}(aq)$
sulfites and bisulfites	H_2SO_3	SO_2	$2 \operatorname{HCl}(aq) + \operatorname{K}_2 \operatorname{SO}_3(aq) \longrightarrow \operatorname{H}_2 \operatorname{O}(l) + \operatorname{SO}_2(g) + 2 \operatorname{KCl}(aq)$
ammonium	NH ₄ OH	NH ₃	$\mathrm{NH}_4\mathrm{Cl}(aq) + \mathrm{KOH}(aq) \longrightarrow \mathrm{H}_2\mathrm{O}(l) + \mathrm{NH}_3(g) + \mathrm{KCl}(aq)$

© 2012 Pearson Education, Inc.

NH₃ is very soluble in water, even though enough gas escapes the solution that you can detect its smell.
I prefer to indicate that it is aqueous, while your book prefers to call it a gas.

Acids and Bases

- You have heard the term acid applied to several compounds.
 - All of these compounds mentioned so far contain H⁺, called a <u>proton</u>.
- There are at least three common methods for defining acids and bases.
- The method named for Swedish chemist Svante Arrhenius defines them as follows:
 - <u>Acids</u> are compounds which produce H⁺ ions in solution
 - <u>Bases</u> are compounds which produce OH⁻ ions in solution

Neutralization Reactions

- Neutralization reactions are a subclass of doubledisplacement reactions.
- □ The general form of this reaction is

acid + base \rightarrow water + salt

where the salt is any ionic compound.

In most cases, this can be further simplified to the netionic equation

 $H^+_{(aq)} + OH^-_{(aq)} \rightarrow H_2O_{(I)}$

Examples

$$HBr_{(aq)} + KOH_{(aq)} \rightarrow H_2O_{(I)} + KBr_{(aq)}$$

 $2\mathrm{HNO}_{3(\mathrm{aq})} + \mathrm{Ba(OH)}_{2(\mathrm{aq})} \rightarrow 2\mathrm{H}_2\mathrm{O}_{(\mathrm{I})} + \mathrm{Ba(NO}_3)_{2(\mathrm{aq})}$

Write the balanced equations showing:

a) the neutralization of lithium hydroxide by perchloric acid.

b) the reaction of sulfuric acid with strontium hydroxide.

Combustion Reactions

- In a combustion reaction, a chemical reacts with oxygen gas, forming various products.
- In this class, we will only consider the combustion of organic compounds containing C, H, and sometimes O.
- In these reactions, the compound reacts with oxygen gas, producing carbon dioxide and water vapor.

 $[\text{organic compound}] + \text{O}_{2(g)} \rightarrow \text{CO}_{2(g)} + \text{H}_2\text{O}_{(g)}$

Examples of Combustion

- □ Combustion of benzene $2C_6H_{6(I)} + 15O_{2(g)} \rightarrow 12CO_{2(g)} + 6H_2O_{(g)}$
- □ Combustion of formaldehyde $CH_2O_{(I)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(g)}$
- What is the balanced equation for the combustion of glycerol (C₃H₈O₃₍₁₎)?

Activities of Metals

- □ We can use the <u>activity</u> of a metal to describe how readily it loses electron(s) in a reaction.
 - The more active the metal, the more readily it loses its electrons.
- A more active metal will displace a less active metal in a single displacement reaction; the reverse will not occur.
 - In other words, an active metal will force the cation of a less active metal to take its electrons away from it.
- □ We look to the <u>activity series</u> to see the relative activities of the metals.
 - The activity series should not be memorized, but you should become familiar with trends within it.

Displacing Hydrogen

- Notice that many metals can displace the H⁺ from acids, changing it into H₂.
 - Notice that the charged hydrogen ion is transformed into the neutral hydrogen molecule.
- Some very active metals can even displace H⁺ from water, leaving OH⁻ behind.

□ In these cases, think of water as HOH.

When Does the Reaction "Go"?

So let's consider one single displacement that works well...

 $Zn + 2AgNO_3 \rightarrow Zn(NO_3)_2 + 2Ag$

- Since zinc is more active than silver (higher on the activity series), zinc will displace silver.
- □ Consider the reverse reaction... Ag + $Zn(NO_3)_2 \rightarrow no$ reaction
- Since silver is less active than zinc, it cannot displace it; therefore, no reaction can occur.

Examples

□ Consider the following single displacement reaction:

 $3Mg + 2FeCl_3 \rightarrow 3MgCl_2 + 2Fe$

- What is being oxidized?
- What is being reduced?
- □ Try this reaction:

 $2Na + 2H_2O \rightarrow 2NaOH + H_2$

What is being oxidized?

What is being reduced?

Anions derived from halogens (Group VII) can be displaced by a more active halogen.

□ Activity of the halogens decreases down the group:

□ An example:

 $CI_2 + 2NaI \rightarrow 2NaCI + I_2$

□ Will the reverse reaction proceed?

Examples

Predict the products of the following reactions. Write "no rxn." if none is expected to occur.

 $\begin{array}{l} \mathsf{Ba} + \mathsf{CoBr}_3 \rightarrow \\ \mathsf{Ni} + \mathsf{NaCl} \rightarrow \\ \mathsf{I}_2 + \mathsf{KF} \rightarrow \\ \mathsf{Li} + \mathsf{H}_2 \mathsf{O} \rightarrow \\ \mathsf{Ni} + \mathsf{HNO}_3 \rightarrow \end{array}$

Combination Reactions

- In a <u>combination</u> reaction, two chemicals combine into one new chemical.
- It will not always be possible to predict the products of combination reactions at this level of preparation, so we will study a few general cases.

Oxide Formation

Metals often react with oxygen to form a metal oxide.

Ex. 4 Na + $O_2 \rightarrow 2 Na_2O$

 Nonmetals often react with oxygen to form a nonmetal oxide.

Ex. $C + O_2 \rightarrow CO_2$

It is often difficult to predict the products in this case, as CO was another possible oxide you might have considered.

Reactions of Oxides

 Metal oxides often react with water to form metal hydroxides.

Ex. $Na_2O + H_2O \rightarrow 2NaOH$

Nonmetal oxides often react with water to form oxyacids.

Ex. $CO_2 + H_2O \rightarrow H_2CO_3$ $P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$ $SO_3 + H_2O \rightarrow H_2SO_4$ $N_2O_5 + H_2O \rightarrow 2HNO_3$

Reactions of Oxides

Metal oxides and nonmetal oxides often combine to form a salt.

 $Na_2O + CO_2 \rightarrow Na_2CO_3$

 $CaO + SO_3 \rightarrow CaSO_4$

Decomposition Reactions

- Decomposition reactions are simply the reverse of combination reactions.
- Like combination reactions, predicting the products of these reactions is often difficult.
- For now, simply decompose a given compound into two products which could have produced it from a method we discussed earlier.
 - This is very oversimplified, and not always correct, but it is the best we can do at this level.

Examples

$$2HgO \rightarrow 2Hg + O_2$$

$$Na_2CO_3 \rightarrow Na_2O + CO_2$$

$$Li_2SO_4 \rightarrow Li_2O + SO_3$$