

Dalton's Atomic Theory

- Compiling experimental information available during his lifetime, John Dalton described an accurate picture of atoms in 1803 with his atomic theory.
- Dalton's Atomic Theory maintains that
 - All elements are made up of tiny, indivisible particles called atoms, which can be neither created nor destroyed in reactions.
 - Atoms of the same type of element are the same; those of different elements are different.

Probing Further into Atomic Structure: The Electron

- One of the three particles which make up all atoms is the electron
- Benjamin Franklin observed that, when a cloth was rubbed across a glass rod, a charge was developed on each.
- The charges, called positive (+) and negative (-), show an attractive force between opposites and repulsion between identical charges.

- Each atom contains at its core a nucleus, a region of positive charge.
- Positively charged particles, called <u>protons</u>, are contained in the nucleus.
- <u>Electrons</u> (negatively charged particles) "orbit" around the nucleus throughout the atom.
- Later experiments also confirmed that all atoms <u>except</u> <u>hydrogen</u> must contain one or more neutral (non-charged) particles called <u>neutrons</u>.
- Note that the protons and neutrons are each almost 2,000 times more massive than an electron; therefore, most of the mass of an atom is in the nucleus.
- □ The protons and neutrons are called the <u>nucleons</u>.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 3.1 Properties of Subatomic Particles

Particle	Charge (e)*	Mass (amu)†	Location in the Atom
Proton	1+	1.0073	In the nucleus
Neutron	0	1.0087	In the nucleus
Electron	1-	0.000549	Outside the nucleus

*The charges given are relative charges, based on the charge on the electron, e, as the fundamental unit of charge (1 $e = 1.60 \times 10^{-19}$ coulomb).

†The masses are given in atomic mass units (amu), described in Section 3.4.

Some Atomic Symbols

H: Hydrogen	O: Oxygen
C: Carbon	N: Nitrogen
Na: Sodium	Cu: Copper
Cl: Chlorine	K: Potassium
Note that some of	these symbols are unusual!

																		18
	1 1A	2 2A								1	$\stackrel{1}{\mathrm{H}}$		13 3A	14 4A	15 5A	16 6A	17 7A	8A 2 He
2	3 Li	4 Be								_			5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg	3 3B	4 4B	5 5B	6 6B	7 7B	8 8B	9 8B	10 8B	11 1B	12 2B	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Uuu	112 Uub		114 Uuq		116 Uuh		
		6	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb		
		7	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

- The elements on the right and left of the table are collectively called the "<u>Main group elements</u>" or the "Representative Elements"
- The elements in the middle are called the "Transition metals."
 - The classical group numbers for transition metals end in the letter B or have no letter at all (group VIII).
 - Group IB metals (copper, silver, and gold) are often called the <u>coinage metals.</u>
- The elements in the two rows listed below the periodic table are collectively called the <u>inner transition metals.</u>

- Their properties are generally the opposite of the metals.
 - Those which are solids tend to be brittle.
 - Most are poor conductors of electricity at room temperature (insulators) and do not conduct heat well.
 - Some are gases at room temperature; others are solids. Bromine is the only liquid nonmetal at room temperature.

Characteristics of an Atom

- Atoms that have no charge must have the same amount of positive charge as negative charge.
- Therefore, the number of electrons in an atom is equal to the number of protons in an atom (Z) for any neutral atom.
- Atoms which contain more or less electrons than protons therefore must have a <u>charge</u>. These are called <u>ions</u>.

A Lesson in Thinking Backwards

- Suppose an ion has exactly one more electron than it does protons.
 - Will the ion be positively or negatively charged?
- What if an atom lost two electrons?
 - Will the ion be positively or negatively charged?
- For each electron an ion has more than it does protons, we indicate it with a – as a superscript.
- For each electron an ion has less than it does protons, we indicate it with a + as a superscript.
- We call positively-charged ions <u>cations</u> and negativelycharged ones <u>anions</u>

Ion	\mathbf{p}^+	e
Cl ⁻¹	17	18
K ⁺¹	19	18
S ⁻²	16	18
Sr^{+2}	38	36

Practice-	–Compl	ete the	Follow	ing Tabl	е.
Calcium-40	Atomic Number	Mass Number	Number of protons	Number of electrons	Number of neutrons
Carbon-13					
Aluminum-27 ⁺³					
		Tro's "Introduc	tory Chemistry", Chapter 4		

Practice— Continued	-Compl I.	ete the	Follow	ing Tabl	e,
Calcium-40	Atomic Number 20	Mass Number 40	Number of protons 20	Number of electrons 20	Number of neutrons 20
Carbon-13	6	13	6	6	7
Aluminum-27 ⁺³	13	27	13	10	14
		Tro's "Introdu	ctory Chemistry", Chapter 4		

The Mass of an Atom

- The periodic table provides the atomic weight of each element, which corresponds to this weighted average mass.
- These values are in atomic mass units (amu), a very small unit of mass.
 - □ 1 amu = 1.66 × 10⁻²⁴ g
- For example, the mass of a single helium atom is 4.003 amu.

There are thr the table b weight of p	ee isotopes of pote elow indicates. Co potassium from this	assium, as the data in alculate the atomic data.
Isotope	Mass(amu)	% Abundance
³⁹ K	38.963707	93.2581
⁴⁰ K	39.963999	0.001171
41 K	40,961826	6 7302

