CHAPTER TWO: MEASUREMENTS AND PROBLEM SOLVING

Measurements: Our Starting Point

- Why should we begin our study of chemistry with the topic of measurement?
 - Much of the laboratory work in this course is based on measurements of some type or another
 - Both laboratory and lecture material require intelligent interpretation of measurements
 - Beginning students are rarely familiar with the strict measurement methods used in chemistry

Types of Measurements

- Suppose I ask the question:
 "How far is it from Rio Hondo College to UCLA?"
- Your answer must contain two pieces information
 - A numerical value
 - A unit
- Examples
 - About 25 miles
 - About 45 minutes

Types of Measurements

- Length
 - Distance from one location to another
 - Distance between the "center" of one atom and one it is attached to

Mass

- The quantity of matter in whatever it is we are measuring
- The more matter an object contains, the greater its mass

Mass vs. Weight

- Weight measures the gravitational attraction between an object and the Earth (or moon, Jupiter, etc.)
- □ Weight is not the same as mass!
- Example: Consider a 1-ton (2,000 pound) rock on the surface of the Earth.
 - How will its weight change if we move it to the moon? To Jupiter?
 - How will its mass change?

Scientific Notation

- Many measurements in chemistry involve numbers that are extremely large or small.
 - Examples:
 - Number of atoms in a glass of water.
 - Distance between two atoms in a sugar molecule.
- Scientific notation is a convenient mathematical notation which simplifies working with numbers of this magnitude.

Scientific Notation: How it Works

- Take the value under consideration, and move the decimal point after the first non-zero digit.
 Example: 582 --> 5.82
- Next, consider how many places the decimal was moved, and in what direction it was moved.
 - The decimal moved 2 places to the left.
 - Our new value is 10², or 100 times, smaller than it was to begin with.
- Undo this by multiplying by 10 to the power of how many places the decimal moved.
 - This power is positive if the decimal moved to the left, negative if it moved to the right
 - Our value is 5.82×10^2

Examples

Express these numbers in scientific notation.

23,894.

0.004289

0.00232

Practice—Write the Fo	ollowing in Scientific
123.4	8.0012
145000	0.00234
25.25	0.0123
1.45	0.000 008706
	9
Practice—Write the Fo	ollowing in Scientific
Practice—Write the Fo Notation, Continued 123.4 = 1.234 x 10 ²	ollowing in Scientific 8.0012 = 8.0012 x 10 ⁰
Practice—Write the Fe Notation, Continued 123.4 = 1.234 x 10 ² 145000 = 1.45 x 10 ⁵	$_{9}$ ollowing in Scientific $8.0012 = 8.0012 \times 10^{0}$ $0.00234 = 2.34 \times 10^{-3}$
Practice—Write the Fe Notation, Continued 123.4 = 1.234 × 10 ² 145000 = 1.45 × 10 ⁵ 25.25 = 2.525 × 10 ¹	9 ollowing in Scientific $8.0012 = 8.0012 \times 10^{0}$ $0.00234 = 2.34 \times 10^{-3}$ $0.0123 = 1.23 \times 10^{-2}$

Standard Form	
2.1 x 10 ³	4.02 x 10 ⁰
9.66 x 10 ⁻⁴	3.3 x 10 ¹
6.04 x 10 ⁻²	1.2 x 10 ⁰
Practice—Write the Standard Form, Co	e Following in ntinued
Practice—Write the Standard Form, Co 2.1 x 10 ³ = 2100	e Following in ntinued 4.02 x 10 ⁰ = 4.02
Practice—Write the Standard Form, Co 2.1 x 10 ³ = 2100 9.66 x 10 ⁻⁴ = 0.000966	e Following in ntinued $4.02 \times 10^{0} = 4.02$ $3.3 \times 10^{1} = 33$

Which digits in each measurement are certain? Uncertain?

Significant Figures

- Clearly, when we take measurements, there is a limit as to how accurate our data can be.
- □ For example, compare your weight on a:
 - A bathroom scale
 - A truck scale
- Significant figures are those values in a measurement which we can rely on for accuracy.
- The term significant digits is sometimes also used, as are abbreviated terms like "sig figs" and "sig digs"

- Trailing zeros are significant <u>if there is a decimal point in the</u> value.
- If there is no decimal, the zeros are ambiguous and generally not considered significant. Results should be represented in scientific notation. Let's consider 6,800

How many sign have?	ificant digits	do each of these valu
462.0	1230	1230.
0.0	030900	0.0005
Determine the Nu Range of Precision	mber of Signific n, and Indicate	cant Figures, the Expected the Last Significant Figure
Determine the Nu Range of Precision	mber of Signific n, and Indicate	ant Figures, the Expected the Last Significant Figure
Determine the Nu Range of Precision	mber of Signifia n, and Indicate	cant Figures, the Expected the Last Significant Figure 0.0012
Determine the Nu Range of Precision 12000 120.	mber of Signifia n, and Indicate	cant Figures, the Expected the Last Significant Figure 0.0012 0.00120

Continued			te me Lusi orginne	
□ 1 <u>2</u> 000	2		□ 0.001 <u>2</u>	2
From 11000 to 13000			From 0.0011 to 0	.0013.
□ 12 <u>0</u> .	3		□ 0.0012 <u>0</u>	3
From 119 to 121.			From 0.00119 to	0.00121.
□ 12.0 <u>0</u>	4		□ 120 <u>1</u>	4
⁻ rom 11.99 to 12.01.			From 1200 to 120)2.
□ 1.2 <mark>0</mark> x 10 ³		3	□ 120 <u>1</u> 000	4
From 1190 to 1210.			From 1200000 to 1	202000.

Rounding

- In general, rules for rounding in chemistry do not differ from the rules you learned in earlier math courses
- Sometimes you may be asked to round to a particular place value
- Most times, you will need to round to a specific number of significant digits
- Question In what situations could rounding be a bad thing?

Rounding

Examples:

Round 134.786 to a. the hundredths place b. four significant figures

Round 4,852.78 to a. the tens place b. two significant figures

Calculations: Multiplication & Division

- When performing multiplication and division, first count the number of significant digits in each part of the calculation.
- Then, determine which value has the <u>least</u> number of significant digits.
- Your answer will be rounded to that many significant figures.

Examples

 $2.5 \times 7.89 = 20.$

 $\frac{100.}{25} = 4.0$

Calculations: Addition and Subtraction

- When adding or subtracting, consider the value with the *least* precision. Your answer must extend to that level of precision.
 - For example, suppose you are adding 60.82 and 7.831
 - 60.82 goes to the hundredths place
 - 7.831 extends to the thousandths place
 - Therefore, your answer will round to the hundredths place.

 VERY IMPORTANT: Note that in adding and subtracting, the number of significant figures in the values does <u>not</u> matter!

□ Let's take the previous problem

$(6.834 \times 8.32) - 3.45 =$

- □ Where do you begin first?
- Remember the mathematical order of operations, i.e., 'Please Excuse My Dear Aunt Sally'?
- □ In this case start with parenthesis and determine the sig figs.
- □ Then complete the remainder of the equation.

□ 6.834 x 8.32 = 56.85888 (how many sig figs?)

• _____ - 3.45 = _____

Exact and Inexact Numbers

- Most measurements we have a certain amount of uncertainty associated with them
- A measurement with any degree of uncertainty is described as an <u>inexact number</u>
- □ Some numbers have no uncertainty associated with them
 - Number of eggs in a basket (countable)
 - Number of people in a room (countable)
 - Number of inches in a foot (a defined relationship)
 - Number of quarters (or pennies, nickels, or dimes) in a dollar (all are defined relationships)
- Such values are described as <u>exact numbers</u>
 - None of these values need to be estimated; they are either countable or defined

Examples

$$(6.27 \times 10^{3}) \times (9.347 \times 10^{-7}) =$$

 $\frac{2.189 \times 10^{13}}{(6.45 \times 10^{-3}) \times (9.2 \times 10^{14})} =$

What about significant figures here?

The English System

- The English System of units includes many familiar units
 - Inches, Feet, and Miles
 - Liquid Ounces
 - Pounds and Tons
- Despite its popularity, the English System has a serious flaw

SI Units

- SI units (after "International System") are based on powers of 10
 - There are 10 millimeters in a centimeter
 - There are 10 centimeters in a decimeter
 - There are 10 decimeters in a meter.
- You only need to know what each prefix means to be able to easily convert from one unit to another.
- These prefixes are used in all types of measurements, including distance, volume, time, and energy among many others.

SI Units: Common Base Units

Туре	Base Unit	Abbreviation
Length	Meter	m
Mass	Gram*	g
Volume	Liter	L
Energy	Joule	J
Time	Second	S
Temperature	Kelvin	К
Amount	Mole	mol

Table of Prefixes for SI Units

prefix	abbreviation*	power of 10	decimal form	word form
tera-	т	1012	1,000,000,000,000	trillion
giga-	G	10 ⁹	1,000,000,000	billion
mega-	Μ	106	1,000,000	million
kilo-	k	10 ³	1,000	thousand
hecto-	h	10 ²	100	hundred
deka-**	da	10 ¹	10	ten
deci-	d	10-1	0.1	tenth
centi-	с	10-2	0.01	hundredth
milli-	m	10-3	0.001	thousandth
micro-	μ	10-6	0.000001	millionth
nano-	n	10 ⁻⁹	0.00000001	billionth
pico-	р	10-12	0.00000000001	trillionth
femto-	f	10-15	0.0000000000000000000000000000000000000	quadrillionth

Units of Temperature

- □ Fahrenheit (°F)
 - Commonly used to measure temperatures in the U.S., but not very practical for scientific use.
- □ Celsius (°C)
 - Unit most commonly used in determining temperature in the laboratory.
- □ Kelvin (K)
 - The SI unit of temperature.
 - O K is called "absolute zero." It is impossible to for a system to have a temperature of O K (or lower).

The Temperature of the Freezing and Boiling Points of Water

Temperature Scale	Freezing Point	Boiling Point
°F	32	212
°C	0.00	100.00
К	273.15	373.15

Conversion Factors

- Conversion factors are fractions which have different units in the numerator and denominators
- The value in the numerator and denominator are equivalent, so multiplying be a conversion factor does not ultimately change the value of a measurement
- For example, we can get the following conversion factors from the equation below:

12 inches = 1 foot

Unit Conversions

Consider the following problem:

"Convert 18.5 feet to inches."

We need a conversion factor which will cancel out feet, and leave us with inches.

 Strategy: Divide by feet (in denominator), multiply by inches (in numerator)

18.5 ft. $\left(\frac{12 \text{ in.}}{1 \text{ ft.}}\right) = 222 \text{ in.}$

Conversion Factors using SI Units

- Before attempting conversion problems using SI units it is essential that you know the power of ten which corresponds to each prefix
- You must be able to write each relationship between a prefixed unit and its base unit in two different ways
- For example, consider the following units and their conversion factors:

Prefixed unit: centimeters (cm)

Base unit: meter

 $1 \text{ cm} = 10^{-2} \text{ m}$ and $10^2 \text{ cm} = 1 \text{ m}$

1cm	10 ⁻² m
10 ⁻² m	1cm
1m	10 ² cm
10 ² cm	1m

Unit Conversions

Consider this example, using SI units:
 "How many centimeters are in 9.86 m?"

9.86 m ×
$$\left(\frac{1 \text{ cm}}{10^{-2} \text{ m}}\right) = 986 \text{ cm}$$

Unit Conversions

Another example using the SI system.
 "How many nanoseconds (ns) are there in 2.83 milliseconds (ms)?"

2.83 m/s $\left(\frac{10^{-3} s}{1 m/s}\right) \left(\frac{1 n s}{10^{-9} s}\right) = 2.83 \times 10^{6} n s$

Conversion Factors Between SI and English Units

Type of Measurement	Probably Most Useful to Know	Others Useful to Know		Know
Length	$\frac{2.54\text{cm}}{1\text{in.}}$	<u>1.609 km</u> 1mi	<u>39.37 in.</u> 1m	<u>1.094 yd</u> 1m
Mass	453.6 g 1lb		2.205 lb 1kg	
Volume	3.785 L 1gal		<u>1.057 qt</u> 1L	

Multiple Unit Conversions

In many measurements, such as in this problem, there are units in both the numerator and the denominator:
 "A car is traveling at 60. miles per hour. How fast is this in centimeters per second?"

 $\frac{60 \text{ miles}}{1 \text{ hour}} \left(\frac{5280 \text{ ft.}}{1 \text{ mile}}\right) \left(\frac{12 \text{ in.}}{1 \text{ ft.}}\right) \left(\frac{2.54 \text{ cm}}{1 \text{ in.}}\right) \left(\frac{1 \text{ hour}}{60 \text{ min}}\right) \left(\frac{1 \text{ min}}{60 \text{ sec}}\right) = 2682 \frac{\text{ cm}}{\text{ s}}$ $= 2.7 \times 10^3 \frac{\text{ cm}}{\text{ s}}$

Solution Maps

- A solution map is a visual outline that shows the strategic route required to solve a problem.
- For unit conversion, the solution map focuses on units and how to convert one to another.
- For problems that require equations, the solution map focuses on solving the equation to find an unknown value.

Systematic Approach

- 1. Write down the given amount and unit.
- 2. Write down what you want to find and unit.
- 3. Write down needed conversion factors or equations.
 - a. Write down equivalence statements for each relationship.
 - b. Change equivalence statements to conversion factors with starting unit on the bottom.

Tro's "Introductory Chemistry", Chapter 2

4. Design a solution map for the problem.

- Order conversions to cancel previous units or arrange equation so the find amount is isolated.
- 5. Apply the steps in the solution map.
 - Check that units cancel properly.
 - Multiply terms across the top and divide by each bottom term.
- 6. Determine the number of significant figures to report and round.
- 7. Check the answer to see if it is reasonable.
 - Correct size and unit.

Tro's "Introductory Chemistry", Chapter 2

Example 2.8—Convert 7.8 km to Miles

1.	Write down the Given quantity and its unit.	Given:	7.8 km 2 significant figures
2.	Write down the quantity you want to Find and unit.	Find:	? miles
3.	Write down the appropriate Conversion Factors .	Conversion Factor:	1 km = 0.6214 mi
4.	Write a Solution Map .	Solution Map:	$\begin{array}{c} \text{km} \longrightarrow \text{mi} \\ \hline 0.6214 \text{ mi} \\ \hline 1 \text{ km} \end{array}$
5.	Follow the solution map to Solve the problem.	Solution: 7.8 km	$\times \frac{0.6214 \text{ mi}}{1 \text{ km}} = 4.84692 \text{ mi}$
6.	Significant figures and round.	Round:	4. <u>8</u> 4692 mi = 4.8 mi 2 significant figures
7.	Check.	Check:	Units and magnitude are correct.

- as the values which accompany them.
- For example, what is the area of a square which is 5.0 cm on each side?

 $5.0 \text{ cm} \times 5.0 \text{ cm} = 25 \text{ cm}^2$

□ Let's convert that to square meters:

 $25 \text{ cm}^2 \left(\frac{10^{-2} \text{ m}}{1 \text{ cm}}\right)^2 = 25 (10^{-4} \text{ m}^2) = 2.5 \times 10^{-3} \text{ m}^2$

Area & Volume

□ Common units of volume you should know

□ Liter(L) – the SI unit of volume

- milliliter(mL) another common unit
- Cubic centimeter (cm³ or cc) a unit equivalent to the milliliter

$$1 \text{ mL} = 1 \text{ cm}^3 = 1 \text{ cc}$$

 Dealing with volumes involves a similar procedure to that of areas.

A Density Problem

The mass of an empty graduated cylinder is found to be 22.57 g. 7.25 mL of a liquid is added to it. The graduated cylinder and liquid have a combined mass of 30.79 g. What is the density of the liquid?

One More Density Problem

A 73.43 g cube of gold is dropped into a graduated cylinder whose volume reads 27.8 mL. After the cube sinks to the bottom, what volume reading will the graduated cylinder have? Note that gold has density 19.3 g/cm^3 .

Percentages

- Many chemical calculations involve the use of percentages
- □ In words, percent means "for every 100 parts of the whole"
- For example, say that we have a mixture with 15% iron by mass
- We know from this that, for every 100 grams of the mixture, 15 grams of it is iron, or, as a ratio
 - 15 grams of iron : 100 grams of mixture
- We can generate the following conversion factor (and its reciprocal) for this example:

15 grams of iron 100 grams of mixture

Example

□ The mineral calcite is 40.0% calcium by mass.

a. What mass of calcium is contained in a 1.55 kg block of calcite?

b. What is the mass of a block of calcite which contains 13.5 grams of calcium?

Converting Temperatures

To convert between Celsius and Kelvin, use the following relationship:

 $T(\text{in K}) = T(\text{in }^{\circ}\text{C}) + 273.15$

 \square To convert between °C and °F, use the equation:

$$^{\circ}F = (1.8 \times ^{\circ}C) + 32$$

A Temperature Problem

The temperature in Paris is 23 °C. What is the equivalent temperature in Kelvin? In Fahrenheit?

Accuracy & Precision in Measurements

- If data is <u>accurate</u>, this means that the results obtained are close to the "true and correct" value(s).
- If a group of measurements give data which are close in value, these measurements are said to be precise.

(c)

Find Density of Metal if 100.0 g Displaces Water from 25.0 to 37.8 mL

1. Write down the Given quantity and its unit.	Given:	<i>m</i> =100.0 g <u>3 sig figs</u> displaces 25.0 to 37.8 mL
2. Write down the quantity you want to Find and unit.	Find:	<i>d</i> , g/cm ³
3. Write down the appropriate Conv. Factor and	CF & Equation:	$1 \text{ mL} = 1 \text{ cm}^3 \qquad d = \frac{m}{V}$
4. Write a Solution Map.	Solution Map:	$\begin{array}{c} m, V \\ d = \frac{m}{V} \end{array}$
5. Follow the solution map to Solve the problem.	Solution V = 37.8-25.0 12.8 mL	
6. Significant figures and round.	Round:	7. <u>8</u> 125 g/cm ³ = 7.81 g/cm ³ 3 significant figures
7. Check.	Check:	Units and magnitude are correct.

Density as a Conversion Factor

Example:
A 55.9 kg person displaces
57.2 L of water whenInformation:
Given:
$$m = 5.59 \times 10^4$$
 g
 $v = 57.2$ LWhat is the density of the
person in g/cm³?Find: density, g/cm³
Solution Map: $m, V \rightarrow d$
Equation: $d = \frac{m}{V}$ • Apply the solution maps. $57.2 \not L \times \frac{1 \ mL}{0.001 \ L} \times \frac{1 \ cm^3}{1 \ mL} = cm^3$
 $= 5.72 \times 10^4$
 cm^3 • Apply the solution maps. $57.2 \not L \times \frac{1 \ mL}{0.001 \ L} \times \frac{1 \ cm^3}{1 \ mL} = cm^3$
 $= 5.72 \times 10^4$
 cm^3 • Maximum StateInformation:
Given: $m = 5.59 \times 10^4$ g
 $V = 5.72 \times 10^4$ cm³• Submerged in a water tank.
What is the density of the
person in g/cm³?Information:
Given: $m = 5.59 \times 10^4$ g
 $V = 5.72 \times 10^4$ cm³• Apply the solution mapsGiven: $m = 5.59 \times 10^4$ g
 $V = 5.72 \times 10^4$ cm³• Apply the solution mapsGiven: $m = 5.59 \times 10^4$ g
 $V = 5.72 \times 10^4$ cm³• Apply the solution mapsFind: density, g/cm³
Solution Map: $m, V \rightarrow d$
Equation: $d = \frac{m}{V}$ • Apply the solution maps—equation. $d = \frac{m}{V} = \frac{5.59 \times 10^4 \text{ g}}{5.72 \times 10^4 \text{ cm}^3}$
 $= 0.9772727 \text{ g/cm}^3$
 $= 0.9777 \text{ g/cm}^3$
 $= 0.9777 \text{ g/cm}^3$
 $= 0.9777 \text{ g/cm}^3$

Example:	Information:
A 55.9 kg person displaces	Given: $m = 5.59 \times 10^4 \text{ g}$
57.2 L of water when	$V = 5.72 \times 10^4 \text{ cm}^3$
submerged in a water tank. What is the density of the	Find: density, g/cm ³
person in g/cm°¢	Solution map: $m, v \rightarrow d$
	Equation: $d = \frac{1}{V}$
d = 0	.977 g/cm ³
$\Box \text{ Check the solution:} $ $d = 0.$.977 g/cm ³ are correct
The magnitude of t Since the mass in	he answer makes sense. kg and volume in L are
	aginitude, the answer s
magnitude sr	IOUIU DE CIQSE LO I.