ACIDS AND BASES

Chapter Fourteen

Acids and Bases

- We have already considered the reactions of acids with bases to form water and a salt
 - All of these compounds mentioned so far contain H⁺, called a <u>proton</u>.
- There are at least three common methods for defining acids and bases.
- The method named for Swedish chemist Svante Arrhenius defines them as follows:
 - <u>Acids</u> are compounds which produce H⁺ ions in solution
 - <u>Bases</u> are compounds which produce OH⁻ ions in solution

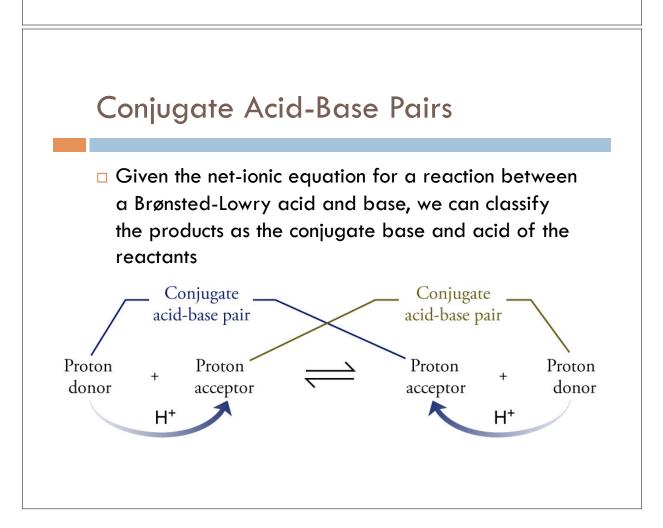
- The Brønsted-Lowry definition of acids and bases is broader than that of Arrhenius
- In particular, you will notice that we can classify many more compounds as bases under this definition
- □ According to this definition,
 - □ an acid donates H⁺ in a reaction
 - a base accepts H⁺ in a reaction
- As with the Arrhenius definition, acetic acid is the acid in the reaction below, and OH⁻ is the base

 $HC_{2}H_{3}O_{2(aq)} + OH^{-}_{(aq)} \rightarrow H_{2}O_{(aq)} + C_{2}H_{3}O_{2(aq)}$

Conjugate Acid-Base Pairs

- The <u>conjugate base</u> of a given acid is the compound and/or ion produced after the acid has donated a proton
- Examples:

Acid	Conjugate Base
$HF_{(aq)}$	F ⁻ (aq)
HNO _{3(aq)}	NO _{3⁻(aq)}
$H_2SO_{4(aq)}$	HSO ₄ (aq)
H ₃ PO _{4(aq)}	H ₂ PO ₄ ⁻ _(aq)


Note that the charge of the conjugate base is one less than that of the acid.

Conjugate Acid-Base Pairs

- Similarly, the <u>conjugate acid</u> of a given base is the compound and/or ion produced after the base has accepted a proton
- □ Examples:

Base	Conjugate Acid
OH- ^(ad)	H ₂ O _(I)
CO3 ²⁻ (aq)	HCO ₃ - _(aq)
HSO ₄ -(aq)	$H_2SO_{4(aq)}$
CIO ⁻ (aq)	HCIO _(aq)

Note that the charge of the conjugate acid is one greater than that of the base.

Conjugate Acid-Base Pairs

Example: Identify the acid, base, conjugate acid, and conjugate base in the following net-ionic equations:

 $H_2S_{(aq)} + NH_{3(aq)} \acute{Y} HS_{(aq)}^- + NH_4^+_{(aq)}$

 $PO_{4}^{3-}(aq) + H_2C_2O_{4(aq)} \acute{Y} + HC_2O_{4}^{-}(aq) + HPO_{4}^{2-}(aq)$

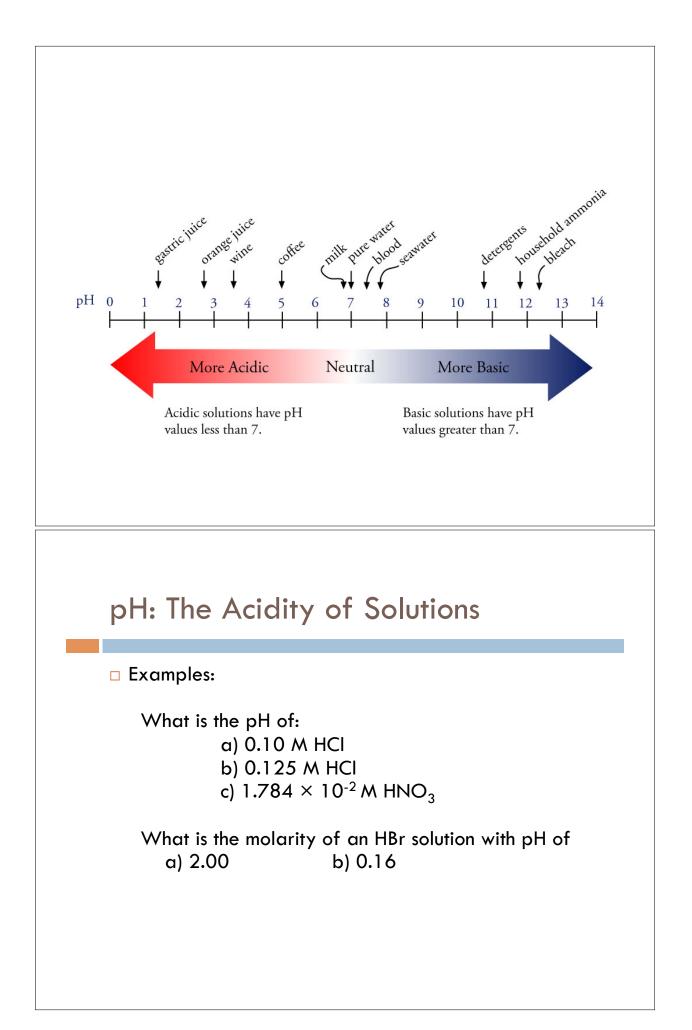
Amphoteric Substances

- Some substances are <u>amphoteric</u>, meaning that they can act as either an acid or a base, depending on the environment
- The classic example is the bicarbonate ion, which acts as a base when added to acid, and acts as an acid when added to base
- This allows us to treat both acid and base spills with baking soda (sodium bicarbonate)

 $\begin{array}{ll} \mathrm{HCO}_{3^{-}(\mathrm{aq})}^{-} + \mathrm{HCI}_{(\mathrm{aq})}^{-} \rightarrow \mathrm{CO}_{2(\mathrm{g})}^{-} + \mathrm{H}_{2}^{-}\mathrm{O}_{(\mathrm{I})}^{-} + \mathrm{CI}_{(\mathrm{aq})}^{-} \\ \mathrm{base} & \mathrm{acid} \end{array}$

 $\begin{array}{rrrr} HCO_{3^{-}(aq)}^{-} + OH_{(aq)}^{-} \acute{Y} CO_{3^{2^{-}}(aq)}^{2^{-}} + H_{2}O_{(I)} \\ acid & base \end{array}$

pH: The Acidity of Solutions


- The pH is a scale employed to measure the acidity (or basicity) of a solution.
- □ Most solutions have a pH between 0 and 14.
- A solution with pH = 7.0 is considered neutral, less than 7 is acidic, and greater than 7 is basic.
- "p" stands for -log₁₀, and the H stands for [H⁺] (the concentration of protons).

 $pH = -log [H^+]$

рΗ

- The pH scale is a logarithmic scale, with a change of one pH-unit indicating a 10-fold change in the acidity/basicity
- For example, a solution that has pH 5 is ten-times more acidic than a solution with pH 6
 - That is, the solution with the lower pH has ten-times the concentration of H⁺ ions as the other
- A solution with pH 4 is one-hundred times as acidic as one with pH 6

□ Etc.

pH: The Acidity of Solutions

The pOH is a similar measure of the basicity of a solution:

 $pOH = -log[OH^{-}]$

□ The scale is like the pH scale, only inverted:

pOH of 7.0 is neutral, less is basic, more is acidic.

pH: The Acidity of Solutions

 A fundamental relationship for aqueous solutions at 25 °C is the following:

$$K_{\rm w} = [{\rm H}^+][{\rm O}{\rm H}^-] = 10^{-14}$$

- \square We call K_w the ion product constant for water
- From this, we can derive the equivalent mathematical statement

pH + pOH = 14.0

It is easy to see that, if we know the acidity of a solution, we can determine the basicity as well.

pH: The Acidity of Solutions

Examples:

A solution has pH = 0.67. Find

the concentrations of H^+ and OH^- , and the value of pOH.

What is the value of pH, pOH, $[H^+]$, and $[OH^-]$ for a 0.0125 M NaOH solution?

Buffers

- A <u>buffer</u> is a solution that resists major changes to its pH when acid or base is added to it
- □ A buffer contains two essential components
 - A weak acid and its conjugate base, or
 - A weak base and its conjugate acid

How a Buffer Works

- Suppose we have a buffer made up of acetic acid (a weak acid) and acetate ions
 - Note that the acetate ion comes from a soluble salt, such as sodium acetate or potassium acetate
- □ What happens if we add some acid to this solution?
- What happens if we add some base to this solution?
- Would HCl and chloride ion form a good buffer solution?